Serveur d'exploration sur la rouille du peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides.

Identifieur interne : 000097 ( Main/Exploration ); précédent : 000096; suivant : 000098

Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides.

Auteurs : Achille Giorcelli [Italie] ; Francesca Sparvoli ; Fulvio Mattivi ; Aldo Tava ; Alma Balestrazzi ; Urska Vrhovsek ; Paolo Calligari ; Roberto Bollini ; Massimo Confalonieri

Source :

RBID : pubmed:15359598

Descripteurs français

English descriptors

Abstract

When present, stilbene synthase leads to the production of resveratrol compounds, which are major components of the phytoalexin response against fungal pathogens of the plant and are highly bioactive substances of pharmaceutical interest. White poplar (Populus alba L.) was transformed with a construct containing a cDNA insert encoding stilbene synthase from grapevine (Vitis vinifera L.), under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a chimeric kanamycin resistance gene. Southern blot hybridization analysis demonstrated the presence and integration of exogenous DNA sequences in the poplar genome. Expression of the stilbene synthase-encoding gene in different transgenic lines was confirmed by Western blot and Northern analyses. Compared to the controls, in the transgenic plants two new compounds were detected and were identified as the trans- and cis-isomers of resveratrol-3-glucoside (piceid) by high-pressure liquid chromatography (HPLC), UV spectrophotometry, electrospray mass spectrometry (HPLC-ESI-MS) and enzymatic hydrolysis. Since poplar is a good biomass producer and piceids are accumulated in substantial amounts (up to 615.2 microg/g leaf fresh weight), the transgenic plants represent a potential alternative source for the production of these compounds with high pharmacological value. Despite the presence of piceid, in our experimental conditions no increased resistance against the pathogen Melampsora pulcherrima, which causes rust disease, was observed when in vitro bioassays were performed.

DOI: 10.1023/b:trag.0000034658.64990.7f
PubMed: 15359598


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides.</title>
<author>
<name sortKey="Giorcelli, Achille" sort="Giorcelli, Achille" uniqKey="Giorcelli A" first="Achille" last="Giorcelli">Achille Giorcelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Istituto di Sperimentazione per la Pioppicoltura-MiPAF, via di Frassineto 35, 1-15033 Casale Monferrato(AL), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto di Sperimentazione per la Pioppicoltura-MiPAF, via di Frassineto 35, 1-15033 Casale Monferrato(AL)</wicri:regionArea>
<wicri:noRegion>1-15033 Casale Monferrato(AL)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sparvoli, Francesca" sort="Sparvoli, Francesca" uniqKey="Sparvoli F" first="Francesca" last="Sparvoli">Francesca Sparvoli</name>
</author>
<author>
<name sortKey="Mattivi, Fulvio" sort="Mattivi, Fulvio" uniqKey="Mattivi F" first="Fulvio" last="Mattivi">Fulvio Mattivi</name>
</author>
<author>
<name sortKey="Tava, Aldo" sort="Tava, Aldo" uniqKey="Tava A" first="Aldo" last="Tava">Aldo Tava</name>
</author>
<author>
<name sortKey="Balestrazzi, Alma" sort="Balestrazzi, Alma" uniqKey="Balestrazzi A" first="Alma" last="Balestrazzi">Alma Balestrazzi</name>
</author>
<author>
<name sortKey="Vrhovsek, Urska" sort="Vrhovsek, Urska" uniqKey="Vrhovsek U" first="Urska" last="Vrhovsek">Urska Vrhovsek</name>
</author>
<author>
<name sortKey="Calligari, Paolo" sort="Calligari, Paolo" uniqKey="Calligari P" first="Paolo" last="Calligari">Paolo Calligari</name>
</author>
<author>
<name sortKey="Bollini, Roberto" sort="Bollini, Roberto" uniqKey="Bollini R" first="Roberto" last="Bollini">Roberto Bollini</name>
</author>
<author>
<name sortKey="Confalonieri, Massimo" sort="Confalonieri, Massimo" uniqKey="Confalonieri M" first="Massimo" last="Confalonieri">Massimo Confalonieri</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15359598</idno>
<idno type="pmid">15359598</idno>
<idno type="doi">10.1023/b:trag.0000034658.64990.7f</idno>
<idno type="wicri:Area/Main/Corpus">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000100</idno>
<idno type="wicri:Area/Main/Curation">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000100</idno>
<idno type="wicri:Area/Main/Exploration">000100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides.</title>
<author>
<name sortKey="Giorcelli, Achille" sort="Giorcelli, Achille" uniqKey="Giorcelli A" first="Achille" last="Giorcelli">Achille Giorcelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Istituto di Sperimentazione per la Pioppicoltura-MiPAF, via di Frassineto 35, 1-15033 Casale Monferrato(AL), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto di Sperimentazione per la Pioppicoltura-MiPAF, via di Frassineto 35, 1-15033 Casale Monferrato(AL)</wicri:regionArea>
<wicri:noRegion>1-15033 Casale Monferrato(AL)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sparvoli, Francesca" sort="Sparvoli, Francesca" uniqKey="Sparvoli F" first="Francesca" last="Sparvoli">Francesca Sparvoli</name>
</author>
<author>
<name sortKey="Mattivi, Fulvio" sort="Mattivi, Fulvio" uniqKey="Mattivi F" first="Fulvio" last="Mattivi">Fulvio Mattivi</name>
</author>
<author>
<name sortKey="Tava, Aldo" sort="Tava, Aldo" uniqKey="Tava A" first="Aldo" last="Tava">Aldo Tava</name>
</author>
<author>
<name sortKey="Balestrazzi, Alma" sort="Balestrazzi, Alma" uniqKey="Balestrazzi A" first="Alma" last="Balestrazzi">Alma Balestrazzi</name>
</author>
<author>
<name sortKey="Vrhovsek, Urska" sort="Vrhovsek, Urska" uniqKey="Vrhovsek U" first="Urska" last="Vrhovsek">Urska Vrhovsek</name>
</author>
<author>
<name sortKey="Calligari, Paolo" sort="Calligari, Paolo" uniqKey="Calligari P" first="Paolo" last="Calligari">Paolo Calligari</name>
</author>
<author>
<name sortKey="Bollini, Roberto" sort="Bollini, Roberto" uniqKey="Bollini R" first="Roberto" last="Bollini">Roberto Bollini</name>
</author>
<author>
<name sortKey="Confalonieri, Massimo" sort="Confalonieri, Massimo" uniqKey="Confalonieri M" first="Massimo" last="Confalonieri">Massimo Confalonieri</name>
</author>
</analytic>
<series>
<title level="j">Transgenic research</title>
<idno type="ISSN">0962-8819</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acyltransferases (metabolism)</term>
<term>Blotting, Northern (MeSH)</term>
<term>Blotting, Southern (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>DNA, Complementary (genetics)</term>
<term>Gene Expression (MeSH)</term>
<term>Glucosides (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Spectrophotometry, Ultraviolet (MeSH)</term>
<term>Stilbenes (metabolism)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Vitis (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>Acyltransferases (métabolisme)</term>
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glucosides (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Spectrophotométrie UV (MeSH)</term>
<term>Stilbènes (métabolisme)</term>
<term>Technique de Northern (MeSH)</term>
<term>Technique de Southern (MeSH)</term>
<term>Technique de Western (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Vitis (enzymologie)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acyltransferases</term>
<term>Glucosides</term>
<term>Stilbenes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acyltransferases</term>
<term>Glucosides</term>
<term>Populus</term>
<term>Stilbènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Northern</term>
<term>Blotting, Southern</term>
<term>Blotting, Western</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Gene Expression</term>
<term>Hydrolysis</term>
<term>Mass Spectrometry</term>
<term>Plants, Genetically Modified</term>
<term>Spectrophotometry, Ultraviolet</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase liquide à haute performance</term>
<term>Expression des gènes</term>
<term>Hydrolyse</term>
<term>Spectrométrie de masse</term>
<term>Spectrophotométrie UV</term>
<term>Technique de Northern</term>
<term>Technique de Southern</term>
<term>Technique de Western</term>
<term>Transformation génétique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">When present, stilbene synthase leads to the production of resveratrol compounds, which are major components of the phytoalexin response against fungal pathogens of the plant and are highly bioactive substances of pharmaceutical interest. White poplar (Populus alba L.) was transformed with a construct containing a cDNA insert encoding stilbene synthase from grapevine (Vitis vinifera L.), under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a chimeric kanamycin resistance gene. Southern blot hybridization analysis demonstrated the presence and integration of exogenous DNA sequences in the poplar genome. Expression of the stilbene synthase-encoding gene in different transgenic lines was confirmed by Western blot and Northern analyses. Compared to the controls, in the transgenic plants two new compounds were detected and were identified as the trans- and cis-isomers of resveratrol-3-glucoside (piceid) by high-pressure liquid chromatography (HPLC), UV spectrophotometry, electrospray mass spectrometry (HPLC-ESI-MS) and enzymatic hydrolysis. Since poplar is a good biomass producer and piceids are accumulated in substantial amounts (up to 615.2 microg/g leaf fresh weight), the transgenic plants represent a potential alternative source for the production of these compounds with high pharmacological value. Despite the presence of piceid, in our experimental conditions no increased resistance against the pathogen Melampsora pulcherrima, which causes rust disease, was observed when in vitro bioassays were performed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15359598</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0962-8819</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2004</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Transgenic research</Title>
<ISOAbbreviation>Transgenic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides.</ArticleTitle>
<Pagination>
<MedlinePgn>203-14</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>When present, stilbene synthase leads to the production of resveratrol compounds, which are major components of the phytoalexin response against fungal pathogens of the plant and are highly bioactive substances of pharmaceutical interest. White poplar (Populus alba L.) was transformed with a construct containing a cDNA insert encoding stilbene synthase from grapevine (Vitis vinifera L.), under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a chimeric kanamycin resistance gene. Southern blot hybridization analysis demonstrated the presence and integration of exogenous DNA sequences in the poplar genome. Expression of the stilbene synthase-encoding gene in different transgenic lines was confirmed by Western blot and Northern analyses. Compared to the controls, in the transgenic plants two new compounds were detected and were identified as the trans- and cis-isomers of resveratrol-3-glucoside (piceid) by high-pressure liquid chromatography (HPLC), UV spectrophotometry, electrospray mass spectrometry (HPLC-ESI-MS) and enzymatic hydrolysis. Since poplar is a good biomass producer and piceids are accumulated in substantial amounts (up to 615.2 microg/g leaf fresh weight), the transgenic plants represent a potential alternative source for the production of these compounds with high pharmacological value. Despite the presence of piceid, in our experimental conditions no increased resistance against the pathogen Melampsora pulcherrima, which causes rust disease, was observed when in vitro bioassays were performed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Giorcelli</LastName>
<ForeName>Achille</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Istituto di Sperimentazione per la Pioppicoltura-MiPAF, via di Frassineto 35, 1-15033 Casale Monferrato(AL), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sparvoli</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mattivi</LastName>
<ForeName>Fulvio</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tava</LastName>
<ForeName>Aldo</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balestrazzi</LastName>
<ForeName>Alma</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vrhovsek</LastName>
<ForeName>Urska</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Calligari</LastName>
<ForeName>Paolo</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bollini</LastName>
<ForeName>Roberto</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Confalonieri</LastName>
<ForeName>Massimo</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Transgenic Res</MedlineTA>
<NlmUniqueID>9209120</NlmUniqueID>
<ISSNLinking>0962-8819</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013267">Stilbenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.-</RegistryNumber>
<NameOfSubstance UI="D000217">Acyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="C022674">stilbene synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>XM261C37CQ</RegistryNumber>
<NameOfSubstance UI="C058229">polydatin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000217" MajorTopicYN="N">Acyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015139" MajorTopicYN="N">Blotting, Southern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="Y">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013267" MajorTopicYN="N">Stilbenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15359598</ArticleId>
<ArticleId IdType="doi">10.1023/b:trag.0000034658.64990.7f</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 1992 Apr 13;301(1):41-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1451785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 1995 Sep;73(9):2752-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8582868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jan;39(2):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 1997 Nov;60(11):1082-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9392877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1988 Feb 15;172(1):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2450022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Jan 14;361(6408):153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8421520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1985 Feb;4(2):277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2002 May 22;50(11):3337-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12010007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Aug;15(2):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2103451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1997 Jun 20;301(3-4):95-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9232838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2001 Nov 21;70(1):81-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11764009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Feb;98(2):728-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 10;275(5297):218-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jun;43(2-3):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10999415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Oct;26(2):667-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7948921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1999 Oct;47(10):4456-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10552833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Mar;24(5):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8193299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 1995 Mar 31;235(2):207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7554275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Pharm Bull (Tokyo). 1982 May;30(5):1766-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7116511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2000 Jan 14;66(8):663-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10680575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 May;13(5):551-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10796021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Mar 25;17(6):2362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2468132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Pharm Bull (Tokyo). 1989 Nov;37(11):3128-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2632060</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Balestrazzi, Alma" sort="Balestrazzi, Alma" uniqKey="Balestrazzi A" first="Alma" last="Balestrazzi">Alma Balestrazzi</name>
<name sortKey="Bollini, Roberto" sort="Bollini, Roberto" uniqKey="Bollini R" first="Roberto" last="Bollini">Roberto Bollini</name>
<name sortKey="Calligari, Paolo" sort="Calligari, Paolo" uniqKey="Calligari P" first="Paolo" last="Calligari">Paolo Calligari</name>
<name sortKey="Confalonieri, Massimo" sort="Confalonieri, Massimo" uniqKey="Confalonieri M" first="Massimo" last="Confalonieri">Massimo Confalonieri</name>
<name sortKey="Mattivi, Fulvio" sort="Mattivi, Fulvio" uniqKey="Mattivi F" first="Fulvio" last="Mattivi">Fulvio Mattivi</name>
<name sortKey="Sparvoli, Francesca" sort="Sparvoli, Francesca" uniqKey="Sparvoli F" first="Francesca" last="Sparvoli">Francesca Sparvoli</name>
<name sortKey="Tava, Aldo" sort="Tava, Aldo" uniqKey="Tava A" first="Aldo" last="Tava">Aldo Tava</name>
<name sortKey="Vrhovsek, Urska" sort="Vrhovsek, Urska" uniqKey="Vrhovsek U" first="Urska" last="Vrhovsek">Urska Vrhovsek</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Giorcelli, Achille" sort="Giorcelli, Achille" uniqKey="Giorcelli A" first="Achille" last="Giorcelli">Achille Giorcelli</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarRustV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000097 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000097 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarRustV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15359598
   |texte=   Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15359598" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarRustV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 27 22:23:40 2020. Site generation: Sun Jan 31 22:19:43 2021